Functional Dissociation of Group III Metabotropic Glutamate Receptors Revealed by Direct Comparison between the Behavioral Profiles of Knockout Mouse Lines
نویسندگان
چکیده
BACKGROUND Group III metabotropic glutamate receptors (mGlu4, mGlu7, mGlu8) display differential brain distribution, which suggests different behavioral functions. However, comparison across the available animal studies remains methodologically hazardous and controversial. The present report directly compares knockouts for each group III receptor subtype using a single behavioral test battery and multivariate analysis. METHODS The behavioral phenotypes of C57BL/6J mice lacking mGlu4, mGlu7, or mGlu8 and their respective littermates were examined using a multimetric test battery, which included elements of neuromotor performance, exploratory behavior, and learning and memory. Multivariate statistical methods were used to identify subtype-specific behavioral profiles and variables that distinguished between these mouse lines. RESULTS It generally appears that mGlu7 plays a significant role in hippocampus-dependent spatial learning and in some fear-related behaviors, whereas mGlu4 is most clearly involved in startle and motivational processes. Excepting its influence on body weight, the effect of mGlu8 deletion on behavior appears more subtle than that of the other group III receptors. These receptors have been proposed as potential drug targets for a variety of psychopathological conditions. CONCLUSION On the basis of these controlled comparisons, we presently conclude that the different group III receptors indeed have quite distinct behavioral functions.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملMetabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders
Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...
متن کاملGroup 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex
The group 1 metabotropic glutamate receptors 1 and 5 (mGluR1/5) have been implicated in mechanisms of synaptic plasticity and may serve as potential therapeutic targets in autism spectrum disorders. The interactome of group 1 mGluRs has remained largely unresolved. Using a knockout-controlled interaction proteomics strategy we examined the mGluR5 protein complex in two brain regions, hippocampu...
متن کاملAltered hippocampal expression of glutamate receptors and transporters in GRM2 and GRM3 knockout mice
Group II metabotropic glutamate receptors (mGluR2 and mGluR3, also called mGlu2 and mGlu3, encoded by GRM2 and GRM3, respectively) are therapeutic targets for several psychiatric disorders. GRM3 may also be a schizophrenia susceptibility gene. mGluR2-/- and mGluR3-/- mice provide the only unequivocal means to differentiate between these receptors, yet interpretation of in vivo findings may be c...
متن کاملThe role of group II metabotropic glutamate receptors in cognition and anxiety: Comparative studies in GRM2−/−, GRM3−/− and GRM2/3−/− knockout mice
Group II metabotropic glutamate receptors (mGlu2 and mGlu3, encoded by GRM2 and GRM3) have been implicated in both cognitive and emotional processes, although their precise role remains to be established. Studies with knockout (KO) mice provide an important approach for investigating the role of specific receptor genes in behaviour. In the present series of experiments we extended our prior cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2015